
At the Intersection of Computing- and Control-Theory: A Tutorial on
Liveness Enforcing Supervisory Policies for Arbitrary Petri Nets*

Arun Raman1 and R.S. Sreenivas1

Abstract— We present a tutorial-introduction to the synthesis
of Liveness Enforcing Supervisory Policies (LESPs) for Discrete-
Event Dynamic Systems (DEDS) modeled by Petri-Nets (PNs).
The tutorial is aimed at researchers unfamiliar with the area,
and the objective is to develop a working knowledge of concepts
and results from the area. We start by introducing PNs as
a modeling tool for DEDS. We motivate the liveness problem
through examples. Following this, we present relevant theoret-
ical results on the computational aspects of LESP synthesis for
PN models of DEDS, along with other results and methods. We
conclude the paper by listing some new directions in the area.

I. INTRODUCTION AND MOTIVATION

A Discrete Event Dynamic System (DEDS) is a discrete-
state system, where the discrete-state changes at discrete-
time instants due to the occurrence of events. The occurrence
of events requires certain conditions or constraints to be
satisfied in the system. The conditions for an event, in
several cases, are naturally dependent on the availability
of resources. For example, in a queuing system, where a
person leaving the queue and entering service is an event,
the change in queue length is subject to the availability of
servers (resources). On the other hand, in many other cases,
an event can be abstractly interpreted as being dependent
on availability of resources. For example, in a program, if
executing the statements inside an IF loop is an event, then
the condition required by the IF expression can be interpreted
as the conditions that are required for the occurrence of the
event. The occurrence of an event in a DEDS creates new
conditions that results in a different set of events that could
occur, and this process can repeat as often as necessary.

One of the ways of modeling such condition-event systems
is by Petri Nets (PNs) [1], [2]. PNs are directed bipartite
graphs; in which the two classes of nodes are transitions
(which correspond to events) and places (which correspond
to conditions). The directed arcs connecting places to transi-
tions, capture the conditions that must be met for an event (a
transition) to be (resp. state-) enabled. Similarly, the directed
arcs connecting transitions to places encode the consequence
of the event that is represented by the transition. When the
prerequisite conditions to an event are satisfied, we say the
(transition representing the) event is enabled. The occurrence
of the event is captured by the firing of the transition that
represents it. It is not imperative that an enabled event (tran-
sition) does occur (fire) every time. The firing of an enabled-

*This work was supported in part by the Arthur Davis Faculty Scholar
Endowment at the University of Illinois at Urbana-Champaign.

1Coordinated Science Laboratory & Industrial and Enterprise Systems
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA {raman12, rsree}@illinois.edu

`

Job enters

 the system

Job is on the

 input list

Processor

available

Job processing

 started

Job is being

 processed

Job processing

completed

Job is on the

 output list

Job exits

 the system

Fig. 1: An illustrative PN model of a simple computer system

transition (occurrence of an event) subtracts an appropriate
number of (integer-valued) tokens from each of its input
places, and adds an appropriate number of tokens to its
output places. The specifics of how many tokens are removed
from (added to) the input (output) place(s) is determined
by the arc weights connecting the nodes. In its graphical
representation, transitions are represented by rectangles and
places by circles, along with weighted-arcs that go from
places to transitions, or transitions to places. The integer-
valued tokens associated with each place are represented by
filled-circles that reside within the circles representing each
place.

PNs are a popular modeling formalism for DEDS be-
cause they provide abundant structural information about
the system, and they are amenable to mathematical analy-
sis. Manufacturing- and Service-Systems; Database-Systems;
Traffic-Networks; Integrated Command, Control, Communi-
cation and Information (C3I) systems; etc., are examples of
DEDS which have been modeled and analyzed by PNs. Fig.
1 presents a PN model of the flow of jobs in a computer
system ([2]). If there is a job to be processed and if the
processor is available, then the event start job processing
occurs, and one of the processors is taken up by the job.
The processor moves to the idle state and becomes available
as soon as the job processing is completed.

Fig. 2 shows a PN model of a weak multiplier ([2]); which
is an example where an event has an abstract interpretation.
The initial number of tokens in places px and py is equal
to the value of the two quantities, x and y respectively,
that are to be multiplied. Place px·y stores the output of the
multiplication. Place p1 acts like an enable place and the
multiplication operation will begin only if it has a token.
The nominal operation of the net is as follows. At the initial

`
xp

yp yxp.

1p 2p

3p

1t

2t

3t4t

Fig. 2: Petri-Net model of a weak multiplier

condition, since only places px, py and p1 have tokens, only
transition t1 is enabled; which upon firing, moves one token
from px to p2. Transition t3 is now enabled as p2 and py have
tokens. Firing of t3 can copy y tokens from place py, putting
them in p3 and px·y, the output places of t3. Now, t2 can fire,
moving the token from p2 back to p1. This enables t4, which
can copy the y tokens from p3 back into py, without losing
the token in p1. This entire process can be repeated exactly
x times, each time putting y tokens in px·y. after which the
marking of place px is reduced to zero, and the net must stop.
The total number of tokens in place px·y is then the product
of x and y. This is the best case scenario as the number of
output tokens is exactly x · y. Since t3 can fire no more than
x times, we can guarantee that the number of tokens in px·y

never exceeds x · y. However, the token in p2 enables both
transitions t3 and t2, and it is possible for t2 to fire before all
y tokens have been copied from py to p3, and added to px·y.
In this case, the number of tokens in px·y will be less than
x·y. Hence, this model simulates the multiplication operation
in a weak sense.

In the rest of this section, we will motivate the liveness
problem in PNs through examples. Consider the PN N1 of
Fig. 3. Transitions t1, t2, t3 and t5 need at least two tokens in
their respective inputs places to be enabled, while transitions
t4 and t6 are enabled if their input places have at least one
one token. The firing of t1 and t2 places three tokens in their
output places (p2 and p1 respectively). N1 has four places,
and we represent the marking (state) of the net as a non-
negative, integral-vector of size four. An initial token load
of (2 0 0 0) means that p1 has two tokens whilst there are
zero tokens in all other places. The firing of transition t3
from this initial state removes two tokens from p1 and adds
a token to place p3. We represent this state-event dynamic
as: (2 0 0 0)

t3
−→ (0 0 1 0). If t4 fires next, we reach the state

(0 2 0 0). We can represent the result of the firing of t3 and
t4 together as a string: (2 0 0 0)

t3t4
−−→ (0 0 1 0). Note that t4t3

is not a valid firing string from (2 0 0 0) as t4 can only fire
if there is at least one token in p3. Now, consider the string:
(2 0 0 0)

t3t4t5t6
−−−−−→ (1 0 0 0). It is easy to see that none of the

transitions are enabled at (1 0 0 0). Consequently, none of
the transitions can fire at this marking and the system is now
in, what is commonly called, a hanged state.

This is formally defined as follows. A DEDS is said to

Fig. 3: Example 1

be in a livelocked state if there is at least one activity that
can never be completed. This is different from a deadlocked
state in which all the activities of the system cannot be
completed. A PN is said to be live if it is possible to fire
any transition, although not necessarily immediately, from
any marking that is reachable from the initial marking.
From a control-theoretic point of view, it is of interest to
analyze the liveness property of DEDS modeled by PNs. The
framework partitions the set of transitions into controllable
transitions and uncontrollable transitions. The supervisory
policy enforces liveness by preventing the firing of a subset
of controllable transitions (which correspond to control-
lable activities/events). The complementary set of uncon-
trollable transitions represent uncontrollable activities/events,
that cannot be influenced by the policy in any way. It is to be
noted that a supervisory policy can only prevent the firing
of a controllable transition, it cannot force a transition to
fire. This has the potential of complicating the behavioral
analysis of PN models, as it may require an exhaustive
enumeration of all possible sequence of transition-firings
before any determination can be made.

The class of supervisory policies, which are basically
control algorithms, considered in this article are (binary-
valued) functions that take the marking of the system as
input and output a 0 (enable) or a 1 (disable) for every
controllable transition. When the supervisory policy enables
a transition, we say that the transition is control-enabled.
For completeness, we say that an uncontrollable transition
is always control-enabled. A transition can fire only if it
is state- and control-enabled. We do not make any other
assumption— the (state- and control-) enabled transitions
can fire at any rate, in any sequence and at any time. In the
graphical representation of PNs, controllable (uncontrollable)
transitions are represented by filled (unfilled) rectangles. In
the remainder of this section, we will systematically try to
come up with a procedure to synthesize an LESP for an
arbitrary PN.

Coming back to Fig. 3, t5 is the only controllable tran-
sition. In the preceding discussion, we identified (1 0 0 0)
as one of the livelocked states. For this particular example,
we can reverse-engineer an LESP using this livelocked state.
The net reached this marking because the firing of t5 reduced
the token load of the system to a level that t1 and t3 are not
enabled anymore. We look to avoid reaching such a state.
With careful eye-balling, we see that the loops p1t1 p2t2 p1
and p1t3 p3t4 p2t2 p1 increase the token load of the system,
whereas p1t1 p2t5 p4t6 p1 and p1t3 p3t4 p2t5 p4t6 p1 reduce the

token load of the system. An obvious LESP is to first increase
the token load of the system to a high enough level, and then
control-enable t5 so that reduction by the t5 p4t6 branch does
not render it livelocked. In fact, this supervisory policy will
enforce liveness on any initial marking that is larger than or
equal to {(2 0 0 0), (0 0 1 0), (0 2 0 0), (0 0 0 2)}. Moreover,
there does not exist an LESP for an initial marking that is
smaller than any of these elements. This observation is in
line with a common intuition that more is better. However,
this is not necessarily true for liveness. Consider the net N2
in Fig. 4. The net can be made live for an initial marking of
(0 0 0 0 1). But if the initial marking is (0 0 0 0 2), then
the uncontrollable transition t6 is enabled, the firing of which
would empty the tokens. Now, transition t1 of N2 takes in
one token and generates three, that is, it increases the token
load of the system. On the other hand, transition t6 decreases
the token load of N2. As with the net N1, one possible LESP
for N2 would be to prevent putting even number of tokens
in p5 until there are sufficient number of tokens in places p1
to p4.

Fig. 4: Example 2

Consider the net N3 in Fig. 5. N3 does not have a branch
that increases or decreases the token load of the system. It
is clear that the main bottleneck in enforcing liveness in N3
is transition t4. The LESP should sequence the firing of t1
and t2 such that both the input places of t4, p3 and p5, can
receive tokens. Based on the three examples, we can loosely

Fig. 5: Example 3

formulate a method for synthesizing an LESP as follows:

1) Identify the permissible states and states-to-avoid. We
use ∆(N) (formally defined in the next section) to
characterize the set of permissible-states.

2) Characterize the boundary between the permissible-
states and the states-to-avoid.

3) Synthesize a policy that constrains the system to
permissible-states.

Using the above steps (or otherwise), we intend to develop
a procedure/algorithm that takes a general PN structure as
input and gives the LESP (in some form) as the output. This
procedure does not assume any structure of the net— there
can be as many places, transitions and arcs, connected in an
arbitrary way in the net. We introduce the formal notations
and definitions in the next section.

II. NOTATIONS AND DEFINITIONS

We useN (N+) to denote the set of non-negative (positive)
integers. A Petri net structure N = (Π,T,Φ,Γ) is an ordered
4-tuple, where Π = {p1, . . . , pn} is a set of n places, T =

{t1, . . . , tn} is a collection of m transitions, Φ ⊆ (Π×T)∪(T ×
Π) is a set of arcs, and Γ : Φ→ N+ is the weight associated
with each arc. The initial marking function (or the initial
marking) of a PN structure N is a function m0 : Π → Nn,
which identifies the number of tokens in each place. We will
use the symbol N(m0) to denote a PN structure N along with
its initial marking m0.

We define the sets •x := {y|(y, x) ∈ Φ} and x• := {y|(x, y) ∈
Φ}. A transition t ∈ T is said to be enabled at a marking mi

if ∀p ∈ •t,mi(p) ≥ Γ(p, t). The set of enabled transitions at
marking mi is denoted by the symbol Te(N,mi). An enabled
transition t ∈ Te(N,mi) can fire, which changes the marking
mi to mi+1 according to mi+1(p) = mi(p) − Γ(p, t) + Γ(t, p).
Given an initial marking m0, the set of reachable markings
for m0, which is denoted by R(N,m0), is defined as the set
of markings generated by all valid firing strings starting with
marking m0 in the PN N.

A supervisory policy P : Nn × T → {0, 1}, is a function
that returns a 0 or 1 for each reachable marking and each
transition. The supervisory policy P permits the firing of
transition t j at marking mi, if and only if P(mi, t j) = 1. If
t j ∈ Te(N, mi) (P(mi, t j) = 1) for some marking mi, we say
the transition t j is state-enabled (control-enabled) at mi. A
transition has to be state- and control-enabled before it can
fire. To reflect the fact that the supervisory policy does not
control-disable any uncontrollable transition, we assume that
∀mi ∈ Nn,P(mi, t j) = 1, if t j ∈ Tu.

A transition tk is live under the supervision P if ∀mi ∈

R(N,m0,P),∃m j ∈ R(N,mi,P) such that tk ∈ Te(N,m j) and
P(m j, tk) = 1. A policy P is a liveness enforcing supervisory
policy (LESP) for N(m0) if all transitions in N(m0) are live
under P. The set ∆(N) = {m0 : ∃ an LESP for N(m0)}
represents the set of initial markings for which there is an
LESP for a PN structure N.

Next we briefly introduce some concepts in computability-
theory. A decision-problem is a problem that is posed as a
”yes” or “no” question for the input values. An undecidable
problem is a decision problem for which there does not exist

a single algorithm that correctly answers ”yes” or ”no” to all
possible inputs. This also means that there do not exist finite
number of algorithms that can correctly solve the decision
problem for input-sets that are unique to themselves; because
if this were true, then the finitely many algorithms could be
combined to create a single algorithm (based on the inputs
for which they work), which can be used to correctly answer
”yes” or “no” for all possible inputs. The Halting Problem is
the most fundamental of all (undecidable) decision problems.
The halting problem is the problem of determining, from a
description of an arbitrary computer program and an input,
whether the program will halt or continue to run forever.
Informally, the undecidability of the halting problem stems
from the fact that there is no way to ascertain if a program
that has not yet halted is in a state of suspended-animation
for perpetuity, from an instance where the same program is
progressing towards completion. For additional details we
refer the reader to Cutland’s text [3].

III. SOME COMPUTABILITY-THEORETIC RESULTS

An integral-set of markingsM ⊆ Nn is said to be control-
invariant with respect to a PN structure N, if the firing of
any enabled uncontrollable transition at a marking in M in
N results in a new marking that is also in M.

Theorem 5.3 of [4] proved the necessary and sufficient
condition for the existence of an LESP, which we state
without proof.

Theorem 1: There exists an LESP for N(m0) if and only
if m0 ∈ ∆(N), where ∆(N) is the set of initial markings that
satisfy the following properties:

1) ∆(N) is control-invariant.
2) ∀m1 ∈ ∆(N),∃m2,m3 ∈ ∆(N),∃ a valid firing sequence

σ = σ1σ2 in N such that m1 σ1
−−→ m2 σ2

−−→ m3 ≥ m2

such that all transitions appear in σ2 at least once and
∀σ3 ∈ pr(σ1σ2), m1 σ3

−−→ m4 ⇒ m4 ∈ ∆(N). Here pr(•)
denotes the prefix.

However, the above conditions were shown to be
untestable. Consider the net Ñ in Fig. 6. Subnets N1 and
N2 have m0

1 and m0
2 as their initial markings respectively.

Besides these subnets, place π1 has one token. All other
places have zero tokens.

Theorem 2: (Ñ(m0) is live) ⇔ (R(N1,m0
1) ⊆ R(N2,m0

2)).
Proof: (Idea) The liveness of τ1 can be guaranteed iff

the token load of π1 is repeatedly replenished. But since
the initial marking is such that m̃0(π1) = 1, •π1 = τn+4
and m̃0(πn+4) = 0, the token load of π1 can be repeatedly
replenished iff the token at place π1 is safely passed on to
πn+4. In fact, the whole net is live once a token is placed
in πn+4 as τ•n+4 = Π̃. Therefore, the presence of a token
in πn+4 is a necessary and sufficient condition for liveness
of Ñ. Now the token can be passed to πn+4 if and only
if it is not lost at πn+3 by firing of the transitions τ̃i

j,
(i = 1, 2 and j = 1, 2, . . . n). This can be prevented iff all
the tokens of N1 and N2 are sinked through transitions τ̂i

j,
(i = 1, 2 and j = 1, 2, . . . n). This is possible if and only if
N1(m0

1) and N2(m0
2) reach the exact same marking, which is

true iff R(N1,m0
1) ⊆ R(N2,m0

2).

… … …

… … …

1N
All trans. uncontrollable

1

1

1p 1

2p
1

np

1

1t
1

2t 1

1mt

1

… … …

… … …2

1p
2

2p
2

np

2

1t
2

2t
2

2mt
2

2N
All trans. controllable

1

1p

2

1p

1

1
ˆ

3

… etc …

1

np

2

np

1ˆ
n

2n

3̂

… etc …

4n

1

1
~ 2

1
~ 1

2
~

2~
n

3n

1

1p

2

1p
2

np1

2p

1

1p

All places in N
~

except

2

1
ˆ

2ˆ
n

2

np

…

2

3

2n

4n

3
ˆ

n

4n

Fig. 6: Ñ constructed from N1 and N2

Theorem 5.3 of [4] presents a rigorous proof of Theorem
2. In what follows, we briefly discuss the proof that deter-
mining if R(N1,m0

1) ⊆ R(N2,m0
2) is not semi-decidable. The

reduction argument is based on the fact that Hilbert’s tenth
problem is unsolvable.

Definition 1: Hilbert’s tenth problem: Given a polyno-
mial, P, over n variables with integer coefficients, does
there exist a vector of integers (x1, x2, . . . , xn) such that
P(x1, x2, . . . , xn) = 0?
The equation P(x1, x2, . . . , xn) = 0 is called the Diophantine
Equation. Matiyasevich [5] proved that there is no general
algorithm to determine if an arbitrary Diophantine equation
has a root or not. We will use this result as the basis of
our proof. The idea is to construct a net that can compute,
in some sense, all solutions of an arbitrary Diophantine
polynomial. We do it in two steps— first by reducing
Hilbert’s tenth problem to the polynomial graph inclusion
problem and then by reducing the polynomial graph inclusion
problem to the PN reachability inclusion problem. In the next
few paragraphs, we discuss the first of the two reductions in
reasonable detail, and present the main idea of the second
reduction. The complete proof is given in [2]. We use x to
denote the vector (x1, . . . , xn).

Definition 2: The graph G(P) of a Diophantine polyno-
mial P(x) with nonnegative coefficients is the set

G(P) = {(x, y) |P(x) ≥ y with x, y ≥ 0} (1)
Definition 3: The Polynomial Graph Inclusion Problem is

to determine for two Diophantine polynomials A and B if
G(A) ⊆ G(B).
Without loss of generality, we only consider non-negative

polynomials with non-negative solutions. We split P(x) into
two polynomials, A(x) and B(x) such that P(x) = A(x)−B(x),
by putting all the terms with positive coefficients in A(x) and
all terms with negative coefficients in B(x). Since P(x) ≥ 0,
we have A(x) ≥ B(x). Consider the following two polynomial
graphs:

G(A) = {(x, y) | A(x) ≥ y}

G(1 + B) = {(x, y) | 1 + B(x) ≥ y}

Now, G(1 + B) ⊆ G(A) if and only if for all nonnegative x
and y, 1 + B(x) ≥ y ⇒ A(x) ≥ y. This is true if and only if
there does not exist x and y such that:

A(x) < y ≤ 1 + B(x)

But we also have A(x) ≥ B(x).

A(x) < y ≤ 1 + B(x) ≤ 1 + A(x)

Since all quantities are integers:

y = 1 + B(x) = 1 + A(x)

which is true if and only if A(x) = B(x), that is P(x) = 0.
Therefore, G(1 + B) ⊆ G(A) if and only if there does not
exist x such that A(x) = B(x). To determine that the equation
P(x) = 0 has a solution, we need only to show that it is
not the case that G(1 + B) ⊆ G(A). This completes the first
reduction.

The second step in the proof is reducing the polynomial
graph inclusion problem to the PN reachability inclusion
problem. Recall the weak multiplier in Fig. 2. Observe that a
weak multiplier is nothing but a polynomial graph where the
actual value in place px·y is equivalent to the y of Equation
1. The main idea of the reduction-proof is that a chain of
weak multipliers can be used to simulate a graph of an
arbitrary polynomial. Then after some technical adjustments
(like equating the number of places in both nets etc.) G(A)
and G(1+ B) become equivalent to R(N1,m0

1) and R(N2,m0
2)

respectively. The reader is referred to [2] for the complete
rigorous proof.

Then from Theorem 2 we have the following result [6],
which is a refinement of the result in [4]:

Theorem 3: ”Is m0 ∈ ∆(N)?” and ”Is m0 < ∆(N)?” are
not semi-decidable.
Theorem 3 proves that testing if there is an LESP for a
particular marking is not semi-decidable. The next question
is to investigate if there is any marking at all for which an
LESP exists. The following theorem proves that it is not
semi-decidable [7]:

Theorem 4: ”Is ∆(N) = ∅?” and ”Is ∆(N) , ∅?” are not
semi-decidable.

Philosophically, the caveat in testing the necessary and
sufficient conditions given in Theorem 1 is that the conditions
are self referential— to determine if a marking is in ∆(N),
we need information about ∆(N). That is, we do not have a
starting-point for algorithmically constructing ∆(N). The next
natural direction of research is to identify nets for which we
can characterize the set ∆(N), and thus enabling us to test

the conditions in 1. [6], [8] proved that the existence of an
LESP is decidable for PN structures that belong to certain
(testable) classes of PNs. These observations hold for the
family of PN structures known as H-class in the literature,
which is identified by the following structural properties:
(1) for each place, the weights associated with the outgoing
arcs that terminate on uncontrollable transitions must have
the smallest of all outgoing arc-weights; (2) the set of input
places to each uncontrollable transition is no larger than the
set of input places of any transition which shares a common
input place with it. The set ∆(N) for these classes of PNs
is right-closed. A set of markings M ∈ Nn is said to be
right-closed if ((m1 ∈ M) ∧ (m2 ≥ m1) ⇒ (m2 ∈ M)),
and is uniquely defined by its finite set of minimal elements.
However, there are nets that have a right-closed ∆(N) and do
not belong to theH-class of PN structures. As an illustration,
consider the net N1 in Fig. 7. The outgoing arcs of place p1
violate the H-class restriction. It can be verified that ∆(N1)
is right-closed ([9]). Is it the particular structure of ∆(N)
that makes the conditions in Theorem 1 testable? If yes, the
next question is to determine if ∆(N) is right-closed or not
for arbitrary nets. Irrespective of the answer to the above
question, the following two theorems prove that it is not
semi-decidable to determine if ∆(N) is right-closed or to even
determine if ∆(N) has a right-closed subset [7].

p1
p2

t4

t1

p4
p3

t2

t3

2

p5

t5 t6

Fig. 7: A PN structure N1 < H for which ∆(N1) is right-
closed.

Theorem 5: ”Is ∆(N) right-closed” and ”Is ∆(N) not right-
closed” are not semi-decidable.

Theorem 6: ”Is there a right-closed subset of ∆(N)?” and
”Is there no right-closed subset of ∆(N)?” are not semi-
decidable.

However, if we constrain the problem even further and
assume a particular nature of the LESP, then the problem
becomes decidable. An LESP P for a PN N(m0) is said to
be a marking-monotone LESP if it is also an LESP for N(m̂0)
for any m̂0 ≥ m0, as well.

Theorem 7: The existence of a Marking-Monotone LESP
is decidable for an arbitrary PN [7].
It is to be noted that for nets belonging to H-class, a
marking-monotone LESP is the maximally permissive (or
minimally restrictive) LESP for that net. If a minimally re-
strictive LESP prevents the firing of a state-enabled transition
at a marking that is reachable under its supervision, then all
LESPs would do the same.

IV. OTHER RESULTS IN LITERATURE

We present a brief review of the literature pertinent to the
synthesis of liveness enforcing supervisory policies (LESPs)
for different classes of PNs. Giua [10] introduced monitors to
supervisory control of PNs. Moody and Antsaklis [11] used
monitors to enforce liveness in certain classes of PNs. This
work was extended by Iordache and Antsaklis [12] to include
a sufficient condition for the existence of policies that enforce
liveness in a class of PNs called Asymmetric Choice Petri
nets. Reveliotis et al. used the theory of regions to identify
policies that enforce liveness in Resource Allocation Systems
[13]. Ghaffari, Rezg and Xie [14] used the theory of regions
to obtain a minimally restrictive supervisory policy that
enforces liveness for a class of PNs. Marchetti and Munier-
Kordon [15] presented a sufficient condition for liveness,
that can be tested in polynomial time, for a class of gen-
eral PNs known as Unitary Weighted Event Graphs. Basile
et al. [16] presented sufficient conditions for minimally-
restrictive, closed-loop liveness of a class of Marked Graph
PNs supervised by monitors that enforce Generalized Mutual
Exclusion Constraints (GMECs). [17] presented a necessary
and sufficient condition for the existence of GMECs that
enforces, among other things, liveness, in a bounded PN. [18]
investigated simplified linear and nonlinear classifiers that
are maximally permissive for deadlock avoidance in resource
allocation systems. Chen and Li [19] used the vector covering
approach to reduce the sets of legal markings and first met
bad markings, resulting in a maximally permissive control
policy for flexible manufacturing systems.

V. DISCUSSION AND OPEN PROBLEMS

The paper laid out, in a tutorial manner, the landscape of
literature in the area of synthesis of LESPs for arbitrary PNs.
The first half of the paper was devoted to getting a feel of
PNs and the liveness problem with the help of examples. The
second half of the paper underlined some of the fundamental
computability-theoretic results from literature in the area of
LESP synthesis. Some proofs were also presented in this
tutorial with an objective of developing an intuition for the
solution. Rigorous versions of the proofs could be found in
the respective references. We end the paper by listing some
new areas of research:

1) Identifying further subclasses of nets and/or character-
izing LESPs for which the existence of an LESP is
decidable.

2) The liveness property of a system can be roughly
interpreted as the excitability of all modes of a system.
An investigation into continuous-time approximations
of PNs ([20]) and switched linear models might poten-
tially build a bridge between the DEDS theory and that
of hybrid systems.

3) Robust LESPs: The LESPs synthesized in the literature
assume perfect information about the state of the sys-
tem. How will the policies change if the supervisor does
not have perfect information about the system?

4) Connection with Combinatorial Game Theory: The un-
controllable transitions can be interpreted as adversaries

which try to take the system to (appropriately defined)
unsafe states, while the controllable transitions have to
fire in such a way so as to remain in the (appropriately
defined) safe states. Can a PN (or any DEDS model
for that matter) be interpreted as a board game? Such
a bridge, apart from giving insights, would enable the
use of tools from Combinatorial Game Theory in DEDS
theory.

REFERENCES

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] J. L. Peterson, “Petri net theory and the modeling of systems,” 1981.
[3] N. Cutland, Computability: An Introduction to Recursive Function

Theory. Cambridge, UK: Cambridge University Press, 1980.
[4] R. S. Sreenivas, “On the existence of supervisory policies that enforce

liveness in discrete-event dynamic systems modeled by controlled petri
nets,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp.
928–945, 1997.

[5] Y. Matiyasevich, Hilbert’s 10th Problem. Cambridge, MA: MIT
Press, 1993.

[6] R. Sreenivas, “On the existence of supervisory policies that enforce
liveness in partially controlled free-choice petri nets,” IEEE Transac-
tions on Automatic Control, vol. 57, no. 2, pp. 435–449, 2012.

[7] C. Chen, A. Raman, H. Hu, and R. S. Sreenivas, “On liveness
enforcing supervisory policies for arbitrary petri nets,” submitted,
IEEE Transactions on Automatic Control.

[8] N. Somnath, On computing a liveness enforcing supervisory policy
for a class of general Petri nets. University of Illinois at Urbana-
Champaign, 2015.

[9] S. Chandrasekaran, N. Somnath, and R. Sreenivas, “A software tool
for the automatic synthesis of minimally restrictive liveness enforc-
ing supervisory policies for a class of general petri net models of
manufacturing-and service-systems,” Journal of Intelligent Manufac-
turing, vol. 26, no. 5, pp. 945–958, 2015.

[10] A. Giua, “Petri nets as discrete event models for supervisory control,”
Rensselaer Polytechnic Institute, Troy, NY, 1992.

[11] J. O. Moody and P. J. Antsaklis, Supervisory control of discrete event
systems using Petri nets. Springer Science & Business Media, 2012,
vol. 8.

[12] M. Iordache and P. J. Antsaklis, Supervisory control of concurrent
systems: a Petri net structural approach. Springer Science & Business
Media, 2007.

[13] S. A. Reveliotis, E. Roszkowska, and J. Y. Choi, “Generalized alge-
braic deadlock avoidance policies for sequential resource allocation
systems,” IEEE Transactions on Automatic Control, vol. 52, no. 12,
pp. 2345–2350, 2007.

[14] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally
permissive petri net controller using the theory of regions,” IEEE
transactions on robotics and Automation, vol. 19, no. 1, pp. 137–141,
2003.

[15] O. Marchetti and A. Munier-Kordon, “A sufficient condition for the
liveness of weighted event graphs,” European Journal of Operational
Research, vol. 197, no. 2, pp. 532–540, 2009.

[16] F. Basile, L. Recalde, P. Chiacchio, and M. Silva, “Closed-loop
live marked graphs under generalized mutual exclusion constraint
enforcement,” Discrete Event Dynamic Systems, vol. 19, no. 1, pp.
1–30, 2009.

[17] F. Basile, R. Cordone, and L. Piroddi, “Integrated design of optimal
supervisors for the enforcement of static and behavioral specifications
in petri net models,” Automatica, vol. 49, no. 11, pp. 3432–3439, 2013.

[18] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis, “Designing
optimal deadlock avoidance policies for sequential resource allocation
systems through classification theory: existence results and customized
algorithms,” IEEE Transactions on Automatic Control, vol. 58, no. 11,
pp. 2772–2787, 2013.

[19] Y. Chen and Z. Li, “Design of a maximally permissive liveness-
enforcing supervisor with a compressed supervisory structure for
flexible manufacturing systems,” Automatica, vol. 47, no. 5, pp. 1028–
1034, 2011.

[20] R. David and H. Alla, “Timed continuous petri nets,” in Discrete,
Continuous, and Hybrid Petri Nets. Springer, 2010, pp. 159–229.

