
Sequential Synthesis of Supervisory Policies for Discrete-Event Systems
Modeled by Petri Nets

A. Raman and R. S. Sreenivas

Abstract— It is often of interest to synthesize a supervisory
policy for enforcing complex properties on the behaviour of
a Discrete-Event System (DES). One way of doing this is by
decomposing complex properties into simpler objectives and
then synthesizing supervisors for those simpler objectives in
a sequential manner. This approach is particularly convenient
if the supervised-system can be represented using the same
modeling framework at each stage of this sequential process.
An additional desirable feature could be that the supervisory
policy remain the same even if the initial-state of the DES were
to change.

In this paper, we consider Petri Net (PN) models of Discrete-
Event Systems (DES) under a supervisory policy that enforces a
desired-property B. We prove that the supervised-system can
be modeled as a PN if and only if the supervisory policy is a
marking-monotone-B-enforcing supervisory policy (MM-BESP)
over reachable markings. In the second half of the paper
we describe a software tool for the synthesis of MM-BESPs,
where the desired-property B is the PN-property of liveness,
for arbitrary Petri Nets. We end the paper with an example
that illustrates both the contributions.

I. INTRODUCTION

A Discrete Event System (DES) is a discrete-state system,
where the discrete-state changes at discrete-time instants due
to the occurrence of events. Suppose we have a directed
graph representing a DES in which each node represents a
state of the system, and each edge represents an event that
takes the system from one state to another. Suppose some
of the events in the system are controllable, in the sense
that they can be prevented from occurring by a supervisor.
The supervisory policy specifies which events (edges) to
disable (resp. remove) at which states (resp. nodes) such
that the DES (residual graph) satisfies a desired property
B. The simplest way of doing this is to use a procedure
that tries all possible combinations of edges that can be
removed. However, this approach is inapplicable when the
graph is infinite in size. Even if we have a finite-model of
the infinite-state DES, there is the additional requirement for
the existence of a procedure that synthesizes the supervisory
policy for this DES. Although well established methods exist
for synthesizing policies that enforce certain properties (like
liveness, safety, boundedness etc.), it is likely that there do
not exist systematic procedures for the synthesis of policies
that enforce complex objectives (like the combination of sev-
eral objectives). One of the ways of accomplishing this is by

This work was supported in part by the Arthur Davis Faculty Scholar
Endowment at the University of Illinois at Urbana-Champaign.

The authors are with the Department of Industrial and
Enterprise Systems Engineering and Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, Illinois, USA.
raman12{rsree}@illinois.edu

decomposing the complex objective into simpler objectives
and then synthesizing policies for enforcing these simpler
objectives (cf. Figure 1).

Plant Model Supervisor 1 Supervisor 2

Plant for Supervisor 2

Fig. 1. Sequential Synthesis of Supervisory Policies.

The issue with this approach is that while there was a
model, within a modeling-paradigm, of the original infinite-
state DES, there may not exist a model of the supervised
system within the same modeling-paradigm. For instance,
Example 3.1 of [1] presents a plant DES that is a Petri
Net (PN), where the desired behavior B corresponds to the
requirement to be non-blocking. Giua and DiCesare have
shown that there is no PN that can model the resulting
supervised-system. In the context of Figure 1 of this paper,
this result shows that while the plant for Supervisor 1 is
a PN, the plant for Supervisor 2 cannot be PN in any
sequential attempt to the synthesis of supervisory policies.
The identification of a necessary and sufficient condition
for a DES modeling paradigm (different from Finite State
Automata) where the supervised-DES can also be represented
using the same modeling paradigm, plays a critical role in
the sequential synthesis of supervisory policies for DES.
Thus, there are two aspects to this problem– (i) the algebraic
framework under which the supervisor construction is carried
out; and, (ii) the model. We discuss each of these points in
the remainder of the section.

Modular problem specification and supervisor construction
for DES was first discussed by Ramadge and Wonham in
[2], [3]. They modeled the behavior of DES as a prefix
closed language L over the set of event alphabet Σ, where
each u ∈ L is a possible event sample path. The behaviour
of the language L is modeled by a generator G which
is an automaton (Σ, Q, δ, q0). Here Q represents the set
of (possibly infinite) states, δ : Σ × Q → Q is the
transition function and q0 is the initial state. Control is
modeled by partitioning the event space into controllable and
uncontrollable events: Σ = Σu ∪ Σc. For multiple objective
controller synthesis, if each objective is specified in terms of
a controlled language Ki, then the overall desired behaviour

is specified by the controlled language ∩iKi. There are
two key points– controllability of the desired language and
compatibility between multiple objectives. For prefix closed
languages, if K1 and K2 are controllable, then K1 ∩K2 is
also controllable (see Section IV in [3] for the definition of
controllability). Compatibility between multiple objectives is
formalized by the concept of nonconflicting languages. Two
controlled languages K1,K2 ∈ Σ∗, are said to nonconflicting
if pr(K1 ∩ K2) = pr(K1) ∩ pr(K2) where pr(•) denotes
the prefix of the string argument. That is, whenever the two
languages K1 and K2 share a prefix, they also share a word
containing this prefix.

Modeling of a supervised Petri net by another Petri net was
first discussed in [4], where the authors gave an algorithm for
constructing the PN model of the supervised system. They
proved that such a construction can always be carried out
for conservative PNs (cf. Theorem 4.1 in [4]). Reference
[1] proved by a counter-example that not all supervised
Petri nets can be modeled by a PN. Using the work in the
aforementioned papers as a starting point, in this paper we
first formally define the concept of composition of a PN
model and a supervisory policy. We extend the algorithm
in [4] to unbounded PNs, and prove that a composition
of a PN model and a supervisory policy P that enforces
a property B exists if and only if the supervisory policy
is marking-monotone B-enforcing supervisory policy (MM-
BESP) over the reachable markings. That is, (i) if P permits
a transition to fire at a smaller marking, then it permits the
transition at all reachable larger markings as well, and (ii)
P enforces property B at all reachable larger markings. We
also generalize the concept of marking-monotonicity from
the set of reachable markings to all markings in the marking
space and prove the necessary and sufficient conditions for
the existence of an MM-BESP. By definition, if P is an MM-
BESP for an initial marking, then it is an MM-BESP for
all larger initial markings as well. Since the policy does not
change for a larger initial marking, the composition of the PN
and the policy also stays the same for a larger initial marking.
This is an important property to have while designing a
system as analysis for various initial markings become easy.

A PN is live if it is possible to fire any transition, although
not immediately, from any marking that is reachable from
the initial marking. Let ∆(N) denote the set of initial
markings for which a Liveness Enforcing Supervisory Policy
(LESP) exists. The modular enforcement of liveness for PNs
is complicated by the fact that the existence of an LESP
heavily depends on the set of markings reachable under
the supervision of an LESP (cf. Theorem 5.1 in [5]). A
PN that is live can lose liveness if some markings that
were originally reachable cannot be reached anymore (due
to the action of some other supervisory policy)— which
is something that is like to happen in a scheme like in
Figure 1 where Supervisor 2 further trims the markings
that were reachable under the supervision of Supervisor 1.
This behaviour is different compared to other well studied
properties like safety, boundedness, reachability of a marking
etc. For instance, if a PN is bounded under the supervision

of a policy, then trimming the set of reachable markings will
not result in loss of boundedness. As the last contribution of
the paper, we combine marking monotonicity with liveness
and describe a software tool for the synthesis of marking-
monotone LESPs for arbitrary PNs.

The paper is organized as follows. In Section II we
formally discuss some preliminaries of PNs and introduce
notations and definitions that we will use in the rest of the
paper. Section III presents the main results of this paper. We
describe the software tool for the synthesis of an MM-LESP
in Section IV. Section V presents an example to illustrate
the results. We conclude the paper with Section VI.

II. NOTATIONS

A Petri net structure N = (Π, T,Φ,Γ) is an ordered 4-
tuple, where Π = {p1, . . . , pn} is a set of n places, T =
{t1, . . . , tm} is a collection of m transitions, Φ ⊆ (Π×T)∪
(T × Π) is a set of arcs, and Γ : Φ → N+ is the weight
associated with each arc. The initial marking function (or the
initial marking) of a PN structure N is a function m0 : Π
→ Nn, which identifies the number of tokens in each place,
where N (N+) denotes the set of non-negative (positive)
integers. The marking can be interpreted as an integer-valued
vector where the i-th component represents the token load
of the i-th place pi ∈ Π. We use the notation m(p) to denote
the tokens in place p ∈ Π at marking m.

We use N(m0) to denote a PN structure N along with its
initial marking m0. In graphical representations of PNs, the
places, tokens, transition and arcs are represented by circles,
filled circles, rectangles and directed edges respectively. For
brevity, we only show non-unitary arc-weights alongside arcs
in graphic representations of PNs in this paper. The set of
transitions in the PN is partitioned into controllable- (Tc ⊆
T) and uncontrollable-transitions (Tu ⊆ T). The controllable
(uncontrollable) transitions are represented as filled (resp.
unfilled) rectangles.

We define the sets •x = {y|(y, x) ∈ Φ} and x• =
{y|(x, y) ∈ Φ}. A transition t ∈ T is said to be state-
enabled at a marking mi if ∀p ∈ •t,mi(p) ≥ Γ(p, t). The
set of state-enabled transitions at marking mi is denoted by
the symbol Te(N,mi). If tj ∈ Te(N,m), then m ≥ IN•,j ,
which is the j-th column of the n × m input matrix IN.
INi,j = Γ(p, t) if pi ∈ •tj , else it is zero. Similarly, the
output matrix is an n×m matrix that encodes the firing of an
enabled transition. OUTi,j = Γ(t, p) if pi ∈ t•j , otherwise
it is zero. The incidence matrix C of the PN N is an n×m
matrix, where C = OUT− IN.

A supervisory policy P : Nn × T → {0, 1}, is a function
that returns a 0 or 1 for each marking and each transition.
If P(mi, tj) = 1, we say the transition tj is control-enabled
(permitted to fire) at marking mi. A transition has to be
state- and control-enabled before it can fire. We assume that
∀tj ∈ Tu ∀mi ∈ Nn,P(mi, tj) = 1. A state- and control-
enabled transition can fire, which changes the marking mi

to mi+1 according to mi+1(p) = mi(p)−Γ(p, t) + Γ(t, p).
A string of transitions σ = t1 . . . tk, where tj ∈ T

(j ∈ {1, . . . , k}), is said to be a valid firing string from

mi if 1) the transitions t1 ∈ Te(N,m
i), P(mi, t1) = 1,

and 2) for j ∈ {1, 2, . . . , k − 1}, the firing of the transition
tj produces a marking mi+j and tj+1 ∈ Te(N,mi+j) and
P(mi+j , tj+1) = 1. If mi+k results from the firing of
σ ∈ T ∗ starting from the initial marking mi, we represent
it symbolically as mi σ→mi+k. The symbol T ∗ denotes the
set of all possible strings that can be constructed from an
alphabet T .

Given an initial marking m0, the set of reachable mark-
ings for m0, which is denoted by R(N , m0), is defined
as the set of markings generated by all valid firing strings
starting with marking m0 in the PN N . The set of reachable
markings under the supervision of P in N from the initial
marking m0 is denoted by R(N , m0, P).

We use BESP as a shorthand to denote a property B
enforcing supervisory policy. The set of initial markings for
which property B can be enforced is defined as: D(B, N) =
{m0 ∈ Nn : ∃ a BESP for N(m0)}. This can also be
restated as: (∃ a BESP for N(m0)) ⇔ (m0 ∈ D(B, N)).
A supervisory policy P is a marking-monotone policy, if
∀mr ≥ ms, ∀t ∈ T , (P(ms, t) = 1) ⇒ (P(mr, t) = 1).
That is, if the policy permits a transition to fire at a smaller
marking, then it will permit it at all larger markings as well.
If a marking-monotone policy that is a BESP for N(ms)
is also a BESP for N(mr) for all mr ≥ ms, then it
is called a marking-monotone BESP (MM-BESP). The set
DM (B, N) denotes the set of initial markings for which an
MM-BESP exists. It follows that DM (B, N) ⊆ D(B, N).
A set of markings S ⊆ Nn is said to be right-closed if
((m1 ∈ S)∧ (m2 ≥m1)⇒ (m2 ∈ S)). A right-closed set,
S, is uniquely identified by its finite set of minimal elements
denoted by min(S). DM (B, N) is right-closed by definition.
For a given initial marking m0, a supervisory policy P
is an MM-BESP over reachable markings, if ∀mr,ms ∈
R(N,m0) R(N,m0,P) such that mr ≥ ms (i) ∀t ∈ T ,
(P(ms, t) = 1) ⇒ (P(mr, t) = 1); and, (ii) if P is MM-
BESP for N(ms), then it is an MM-BESP for N(mr) as
well. A set of markings, S, is said to be control invariant
if @tu ∈ Tu such that for any m1 ∈ S, m1 tu−→ m2

and m2 /∈ S. Sets D(B, N) and DM (B, N) are control
invariant. A supervisory policy P is said to enforce a set
S if (i) S is control invariant; and, (ii) ∀m0 ∈ S, ∀tc ∈ Tc,
(P(m0, tc) = 1) ⇔ (m0 tc−→m1, m1 ∈ S).

A PN N(m0) is said to be live if ∀t ∈ T, ∀mi ∈
R(N,m0),∃mj ∈ R(N,mi) such that t ∈ Te(N,m

j).
(cf. level 4 liveness, [6]). A transition tk is live under
the supervision of P , if ∀mi ∈ R(N,m0,P),∃mj ∈
R(N,mi,P) such that tk ∈ Te(N,mj) and P(mj , tk) = 1.
A policy P is a liveness enforcing supervisory policy (LESP)
for N(m0) if all transitions in N(m0) are live under P .
The test for existence (resp. non-existence) of an LESP
for an initial marking reduces to the decision-problem –
“Is m0 ∈ D(L, N)?” (resp. “Is m0 /∈ D(L, N)?”). For
arbitrary PNs, the questions “Is m0 ∈ D(L, N)?” and “Is
m0 /∈ D(L, N)?” are not semi-decidable [7]. However,
recent results have shown that “Is m0 ∈ DM (L, N)” is

decidable for an arbitrary PN structure N [8].

III. MAIN RESULTS

Definition 1: Let P be a BESP for N1(m0). N1(m0) and
P are said to be B-composable if there exists a Petri net N2

such that R(N2,m
0) = R(N1,m

0,P). We refer to N2(m0)
as the B-preserving composition of N1(m0) and P .

Theorem 1: There exists an MM-BESP for N(m0) if and
only if there exists a subset D̂(B, N) ⊆ D(B, N) such that:

1) m0 ∈ D̂(B, N).
2) D̂(B, N) is right-closed.
3) A supervisory policy that enforces the set D̂(B, N) is

a BESP.
Proof: (If) Suppose D̂(B, N) is right-closed and m0 ∈

D̃(B, N). Let {m̃i}li=1 denote the minimal elements of
D̂(B, N). Consider a supervisory policy that enforces the
set D̂(B, N), that is:

1) ∀tu ∈ Tu, (m0 tu−→ m1) ⇒ (m1 ≥ m̃i for some
i ∈ {1, . . . , l}).

2) ∀tc ∈ Tc, (P(m0, tc) = 1) ⇔ (m0 tc−→m1, m1 ≥ m̃i

for some i ∈ {1, . . . , l})
Let m̂0 ≥ m0 and consider a transition t such that m0 t−→
m1 and m̂0 t−→ m̂1. Suppose P(m0, t) = 1. Then (m1 ≥
m̃i) ⇒ (m̂1 ≥ m̃i). Therefore, a supervisory policy that
enforces a right-closed set (D̂(B, N) in this case) will permit
the transition t to fire at m̂0 as well, and hence is marking-
monotone. By Item 3, the supervisory policy that enforces
D̂(B, N) is a BESP. Therefore, a supervisory policy that
enforces the set D̂(B, N) is an MM-BESP.

(Only If) Suppose there exists an MM-BESP for N(m0).
Let D̂(B, N) = DM (B, N). Then D̂(B, N) is right-closed
by definition. Since there is an MM-BESP for N(m0), it
follows that m0 ∈ D̂(B, N). Suppose m1 ∈ D̂(B, N)

and m1 tu−→ m2 for some tu ∈ Tu. Then we have that
m2 ∈ D̂(B, N). If not, the supervisory policy will not
be an MM-BESP for m2 (as D̂(B, N) = DM (B, N)). In
fact, using the same argument, the MM-BESP will disable
any controllable transition whose firing takes the PN out-
side D̂(B, N). Therefore, the marking monotone policy that
enforces the set D̂(B, N) is a BESP.

Let TM (B, N, t) ⊆ DM (B, N) be the set of markings
such that ∀m ∈ TM (B, N, t), PM (m, t) = 1, where PM is
an MM-BESP that enforces the set DM (B, N). Since PM
is an MM-BESP, TM (B, N, t) is right-closed.

Lemma 1: Let {m̃i}ki=1 = min(DM (B, N)). For any
tc ∈ Tc, min(TM (B, N, tc)) = {max{0, m̃i−C× 1c}}ki=1.
Here 1c is the unit-vector whose c-th element (corresponding
to transition tc) is unity, the max operator acts element-wise,
and 0 represents a vector of all zeros of appropriate size.

Proof: Recall that we need m0 ∈ DM (B, N) for
PM to enforce property B. First we note that ∀m̃i ∈
min(DM (B, N)), max{0, m̃i − C × 1c} ∈ TM (B, N, tc).
Since (m̃i−C×1c)+C×1c = m̃i, we have max{0, m̃i−
C× 1c}+ C× 1c ≥ m̃i. That is, the firing of tc keeps the
marking in the set DM (B, N). That max{0, m̃i −C× 1c}
is the minimal element of TM (B, N, tc) follows from the

observation that it is the largest non-negative marking greater
than (m̃i −C× 1c) and that m̃i is the minimal element of
DM (B, N).

Algorithm 1 COMPOSE(N1, DM (B, N1))
1: Π2 = Π1

2: T2 = T1u

3: Γ2(t, p) = Γ1(t, p), Γ2(p, t) = Γ1(p, t) ∀t ∈ T1u

4: for i ∈ {1, . . . |T1c|} do
5: for j ∈ {1, . . . k} do
6: T2 ← T2 ∪ {tji}
7: for ∀p ∈ Π2 do
8: Γ(p, tji) = (max{0, m̃j −C× 1i})(p)
9: Γ(tji , p) = (max{0, m̃j −C×1i}+C×1i)(p)

10: end for
11: end for
12: end for

Algorithm 1 presents a procedure for evaluating a B-
preserving composition, N2 = (Π2, T2,Γ2), of a PN
N1 = (Π1, T1,Γ1) and an MM-BESP, PM , that enforces
the set DM (B, N1). We need to construct N2 such that
R(N2,m

0) = R(N1,m
0,PM). A supervisory policy has

no control over the uncontrollable transitions. Therefore,
intuitively, the behaviour of the system in the uncontrollable
space should be the same for N1 and N2 (Steps 2 and
3). Lemma 1 identifies k minimal elements of the set
TM (B, N, t) for a controllable transition ti of N1. Using this
observation, each controllable transition, ti, of N1 is replaced
by k-many controllable transitions, {tji}kj=1 in N2. The
input arc-weights of {tji}kj=1 correspond to these minimal
elements of TM (B, N, ti). The output arc-weights of {tji}kj=1

correspond to effect of firing ti. Steps 4 to 12 accomplish
these tasks. T1c and T1u denote the set of controllable and
uncontrollable transitions in N1 respectively.

MM-BESPs are a generalized version of MM-BESPs-
over-reachable-markings. While MM-BESPs consider the
marking monotonicity over all markings, MM-BESPs over
reachability only consider the markings that are reachable
from the initial marking (that is, ignoring the markings that
are not reachable from the initial marking). It follows that
the existence of an MM-BESP implies the existence of an
MM-BESPs over reachability. Lemma 1 and Algorithm 1 can
be easily extended for MM-BESPs over reachable markings
by constraining the analysis to reachability markings. We do
not explicate the details in the interest of space.

Theorem 2: For an arbitrary Petri Net N1: (∃ a B-
preserving composition of N1(m0) and P)⇔ (P is an MM-
BESP over reachable markings).

Proof: (⇒) Suppose there exists a B-preserving
composition of N1(m0) and P . Then R(N2,m

0) =
R(N1,m

0,P). Since we have to consider the unsupervised
reachability graph of N2, without loss of generality in the
context of the proof, we assume all transitions in N2 are
uncontrollable. The condition R(N2,m

0) = R(N1,m
0,P)

implies that transitions {tji} ∈ T2 are state-enabled at a

marking if and only if P(m, tc) = 1 for some tc ∈ T1c.
To see this, assume ∃tji ∈ T2 and a marking m such that
tji ∈ Te(N2,m) but P(m, ti) = 0, where ti ∈ T1c. Then
(m + C × 1ji) ∈ R(N2,m

0) − R(N1,m
0,P), which is a

contradiction. In the same way if ∃ti ∈ T1c and a marking m
such that @tji ∈ T2 such that tji ∈ Te(N2,m) but P(m, tc) =
1, then (m+C×1i) ∈ R(N1,m

0,P)−R(N2,m
0), which

is again a contradiction.
Therefore, ∀m, ∀tu ∈ T2, (tu ∈ Te(N2,m)) ⇔

(P(m, t) = 1 for some t ∈ T1). A transition that is enabled
at a marking is also enabled at all larger markings. This
means that P is a marking-monotone policy. Since N2 is a
B-preserving composition, it means that P is an MM-BESP.

(⇐) We prove that the PN N2 obtained by the construction
in Algorithm 1 is a B-preserving composition of N1 and
a BESP P . We use induction to prove that R(N2,m

0) =
R(N1,m

0,P). The base case is the initial marking m0.
Consider a string σ that is a valid firing string from m0.
Suppose m0 σ−→ m1 and m0 σ1−→ m2, where σ1 ∈ pr(σ).
Here we use pr(•) to denote the set of prefixes of the string
argument. The induction hypothesis is that m2 ∈ R(N2,m

0)
and m2 ∈ R(N1,m

0,P) ∀σ1 ∈ pr(σ).
Since the input arc-weights of uncontrollable transitions

are the same in N1 and N2, if ∃tu ∈ T1u ∩ Te(N1,m
1),

then ∃tu ∈ T2∩Te(N2,m
1). Since the output arc-weights of

uncontrollable transitions are same in N1 and N2, if m1 tu−→
m3, then m3 ∈ R(N2,m

0) and m3 ∈ R(N1,m
0,P). Next

consider a ti ∈ T1c. If P(m1, ti) = 1, then from Lemma 1,
we have that m1 ≥ m̂i for some m̂i ∈ min(TM (B, N, ti)).
Then it follows from the construction in Algorithm 1, that
∃j such that tji ∈ Te(N2,m

1) (Step 8). Moreover, the
firing of tji adds Ci(p)-many tokens in places p ∈ Π2,
which is equal to the number of tokens added in p ∈ Π1.
Therefore, if m1 ti−→ m4, then m4 ∈ R(N2,m

0) and
m4 ∈ R(N1,m

0,P). On the other hand, if P(m1, ti) = 0,
then from Lemma 1, we have that @m̂i ∈ min(TM (B, N, ti))
such that m1 ≥ m̂i. Then it follows from the construction
in Algorithm 1, that @j such that tji ∈ Te(N2,m

1) (Step 8).
This constitutes the induction step.

An important consequence of the above theorem is that
if there exists an MM-BESP P for N(m0), then there
exists a composition of P and N(m0). Moreover, due to the
marking-monotone nature over the whole space of markings,
the composition remains the same for any m̂0 ≥ m0. This
is a desirable feature in the design of systems as analysis
for various initial markings becomes easy, without having to
evaluate the composition for each of them separately.

Suppose we want to synthesize a supervisory policy that
enforces the property ∧lc=1Bc in a Petri net N1(m0). We
assume that the existence of an MM-BcESP over reachable
markings is decidable for all c ∈ {1, . . . , l}, and that there
exists a procedure for synthesis. We also assume that the
composed model and the supervisory policy that enforces
∧lc=1Bc is independent of the order in which Bcs are en-
forced. Algorithm 2 gives an outline of the procedure for the
synthesis of a supervisory policy that enforces (∧lc=1Bc). A

more specific procedure will depend on the properties that
we want to enforce. Note that in Algorithm 2 we use the
set γ̂ as a proxy for the MM policy, which due to result in
Theorem 1 does not lead to any loss of generality.

Algorithm 2 SEQSYNTH(Bc, Nc)
1: γ̂ = Nn

2: while (m0 ∈ γ̂) ∧ ({Bc}lc=1 are not enforced) do
3: for c = 1 to l do
4: γ̂=SYNTHESIZE(γ̂,Bc, Nc)
5: Nc+1=COMPOSE(Bc, Nc)
6: end for
7: end while

The algorithm stops either when the initial marking drops
out of the estimate γ̂ or when property ∧lc=1Bc can be en-
forced by enforcing γ̂. However, whether a specific instance
of the procedure (for given {Bc}lc=1) will terminate or not
will depend on the subroutine SYNTHESIZE. The subroutine
SYNTHESIZE takes the current estimate of γ̂ and modifies
it so that another property Bc can be enforced. For several
properties the while loop in Algorithm 2 will terminate
in a single iteration. But as discussed in Section I, a PN
that is live can lose liveness if some markings that were
originally reachable cannot be reached anymore. Therefore,
if liveness is one of the Bis, then the while loop in Algorithm
2 might have to execute several times till all the properties
are enforced. Due to the typical nature of liveness, in the
next section present a software tool for synthesizing an MM-
LESP for an arbitrary PN N .

IV. AN ALGORITHM FOR MM-LESP SYNTHESIS

Suppose m0 ∈ Ω and PΩ is an MM-policy that enforces
the control-invariant set Ω. We can construct the coverability
graph, G(N(m0),PΩ), of N(m0) under the supervision of
PΩ, along the same lines as the coverability graph of a PN
(cf. section 4.2.1, [6]). The policy PΩ is an MM-LESP for
N(m0) if and only if (i) m0 ∈ Ω, and (ii) there is a closed-
path v

σ→ v in G(N(mi),PΩ) for each mi ∈ min(Ω)
such that all transitions appear at least once in σ, and the
net-change in tokens in each place after the firing of σ is
non-negative (i.e. Cx(σ) ≥ 0). References [9], [10] present
the implementation details of an LESP synthesis algorithm
for a class of PN structures using object-oriented concepts
like encapsulation and polymorphism. Extending the LESP-
synthesis code for MM-LESP synthesis required just a few
modifications, which are described below.

The LESP-synthesis implementation was done within four
major classes called PetriNet, NodeTable, MinimalEle-
mentsManager and MarkingVector, described in detail in
[9] (cf. Figure 3). The PetriNet class has a member function
doTheLoopTest() that checks for the path-requirement on
the coverability graph as described in Figure 2. This test
uses an ILP-based algorithm described in the appendix
of [5] using the API of the MILP-solver lp solve [11].
Among the other member functions of the PetriNet class

• If m0 /∈ Ωi, the procedure terminates with the
conclusion that there is no MM-LESP for N(m0).

• If m0 ∈ Ωi, and Ωi is not control invariant with
respect to N , it is replaced by its largest control
invariant subset, Ωi+1 where Ωi+1 ⊂ Ωi. The
process is repeated with Ωi ← Ωi+1.

• If m0 ∈ Ωi, and Ωi is control invariant with
respect to N , each minimal element of the control
invariant, right-closed set Ωi is tested for the path-
requirement on its coverability graph.

• If all minimal elements satisfy this requirement,
then the members of min(Ω) are presented as a
description of the MM-LESP for N(m0).

• If there are minimal elements that do not meet the
path-requirement, then each minimal element mi

that fails the requirement is “elevated” by n-many
unit-vectors, where n is the number of places in
N . The resulting markings define a right-closed set
Ωi+1 ⊂ Ωi. After this, the process is repeated with
Ωi ← Ωi+1.

Fig. 2. Pseudo-code for the deciding if there is an MM-LESP for N(m0).

<<header>>
NodeTable.h - class NodeTable

<<header>>
NodeTable.h - class MarkingVector

<<class>>
PetriNet.cpp

<<class>>
MinimalElementsManager.cpp

<<header>>
PetriNet.h

<<header>>
MinimalElementsManager.h

<<class>>
NodeTable.cpp - class NodeTable

<<class>>
NodeTable.cpp - class MarkingVector

A Implements B

C “Has-a” D

E “Uses-a” F

A B

C D

E F

Friend

Figure 3.1: Class Diagram

a pointer to Class PetriNet. The three classes PetriNet, NodeTable, MinimalElementManager are marked

by a ‘Has-a’ relationship with MarkingVector and hence contain one or more objects of Marking vector. The

sections below give a detailed description and functionality of each of these classes.

3.2 Class MarkingVector

The marking vector mi corresponds to a set containing the number of tokens in each place at any given state

of the Petri net. The MarkingVector class is used to represent this set which forms the basic building block

of the algorithms used to obtain the LESP for the net. The public members of this class are place, a vector

(STL container) of integers that stores the token count. The class exposes overloaded methods for some

basic arithmetic operations of addition (+), subtraction (-) and multiplication (⇥) by a constant ! and set

comparison operations such as ==, �, � and ⌫. Every other class contains members which are objects of

the MarkingVector class. The method initialize() is used to assign unit vector markings 1j corresponding

to each place in the net. The figure 3.2 shows the structure of this class.

13

Fig. 3. The class structure of the Object-Oriented Implementation for
LESP synthesis from [9], which was re-used for MM-LESP synthesis.

is a member function computeMinimalElementsOfCon-
trolInvariantSet() which computes the (minimal elements
of) largest control-invariant subset of any right-closed set of
markings that was not control invariant with respect to N .
This member function was modified, in the implementation
for MM-LESP synthesis, to check if m0 ∈ Ωi+1 before
making the substitution of Ωi ← Ωi+1. The other classes (i.e.
NodeTable, MinimalElementsManager and MarkingVec-
tor) and their member functions were kept with no change.
The input and output structure of the earlier implementation
was retained without change for the MM-LESP synthesis as
well.

Fig. 4. Petri Net, N1, to illustrate the procedure of Algorithms 1 and 2.

V. AN ILLUSTRATIVE EXAMPLE

We illustrate the procedure in Algorithm 1 and 2 using
an example. We are interested in synthesizing a supervisory
policy, P , for the PN N1 as shown in Figure 4. If m0 is
the initial marking, then the objectives for supervisions are:
(1) N1(m0) should be live; and (2) ∀m1 ∈ R(N1,m

0,P),
m1(p6)+m1(p7)+m1(p8) ≥ 1. The set of initial markings
for which an LESP exists, D(L, N1), is given by the right-
closed set with minimal elements m̃1 = (1 0 0 0 0 0 0
0)T and m̃2 = (0 0 0 1 1 0 0 0)T ([10]). Let C1 = (-1 1
0 0 0 0 0 0)T denote the column of the incidence matrix
C corresponding to transition t1. Applying the result from
Lemma 1, we get two minimal elements of TM (L, N1, t1),
{m̂i}i=1,2, as: m̂1 = max{0, m̃1 −C1} = (2 0 0 0 0 0 0
0)T and m̂2 = max{0, m̃2 − C1} = (1 0 0 1 1 0 0 0)T .
Upon firing of t1 from m̂1 and m̂2, we get the markings
m1 = (1 1 0 0 0 0 0 0)T and m2 = (0 1 0 1 1 0 0
0)T respectively. The first thing to note is that m1,m2 ∈
D(L, N1). The PN N2 which is a composition of N1 and
the LESP PL is shown in Figure 5. Transition t1 in N1 is
replaced by two new controllable transitions t11 and t21. The
input (output) arc-weights of t11 and t21 correspond to m̂1 and
m̂2 (resp. m1 and m2) respectively. Transition t9 will always
be enabled by the LESP PL. Therefore, there is no change
in it. It can be verified that R(N2,m

0) = R(N1,m
0,PL).

Next we synthesize an LESP that enforces the property:
∀m1 ∈ R(N1,m

0,P), m1(p6)+m1(p7)+m1(p8) ≥ 1. Let
DM (C, N1) = {m ∈ Nn : m(p6) + m(p7) + m(p8) ≥ 1}.
Since the tokens in place p8 can be lost by the uncontrolled
firing of t10, transition t9 should be controlled enabled if and
only if the resulting marking is in DM (C, N1). By Lemma
1, the minimal elements of TM (C, N1, t1) are: {(0 0 0 0 0
0 2 0)T , (0 0 0 0 0 1 1 0)T }. For this particular example,
the intersection of DM (L, N1) and DM (C, N1) gives us an
estimate of the set of markings for which a supervisory policy
that enforces both properties exists.

VI. CONCLUSION

In this paper, we formalized the concept of composition
for a PN model and supervisory policy. A PN model of the
supervised system was obtained by systematically replacing
a controllable transition in the plant model by a set of
transitions. We proved that there exists a composition of a PN

Fig. 5. Petri Net, N2.

Fig. 6. Petri Net, N3.

model and a supervisory policy if and only if the supervisory
policy is marking monotone over its reachable markings. We
also presented a procedure for obtaining a Petri net model of
the supervised system. One of the open problem is to identify
different interpretations of composition and to obtain similar
results.

REFERENCES

[1] A. Giua and F. DiCesare, “Blocking and controllability of petri nets
in supervisory control,” IEEE Transactions on Automatic Control,
vol. 39, no. 4, pp. 818–823, 1994.

[2] P. J. Ramadge and W. M. Wonham, “Modular feedback logic for
discrete event systems,” SIAM Journal on Control and Optimization,
vol. 25, no. 5, pp. 1202–1218, 1987.

[3] ——, “The control of discrete event systems,” Proceedings of the
IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[4] A. Giua and F. DiCesare, “Supervisory design using petri nets,” in
Proceedings of the 30th IEEE Conference on Decision and Control.
IEEE, 1991, pp. 92–97.

[5] R. S. Sreenivas, “On the existence of supervisory policies that enforce
liveness in discrete-event dynamic systems modeled by controlled petri
nets,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp.
928–945, 1997.

[6] J. L. Peterson, “Petri net theory and the modeling of systems,” 1981.
[7] R. Sreenivas, “On the existence of supervisory policies that enforce

liveness in partially controlled free-choice petri nets,” IEEE Transac-
tions on Automatic Control, vol. 57, no. 2, pp. 435–449, 2012.

[8] C. Chen, A. Raman, H. Hu, and R. S. Sreenivas, “On liveness
enforcing supervisory policies for arbitrary petri nets,” conditionally
accepted, IEEE Transactions on Automatic Control.

[9] S. Chandrasekaran, “Object-oriented implementation of the minimally
restrictive liveness enforcing supervisory policy in a class of petri
nets,” University of Illinios at Urbana-Champaign, 2013.

[10] S. Chandrasekaran, N. Somnath, and R. Sreenivas, “A software tool
for the automatic synthesis of minimally restrictive liveness enforc-
ing supervisory policies for a class of general petri net models of
manufacturing-and service-systems,” Journal of Intelligent Manufac-
turing, vol. 26, no. 5, pp. 945–958, 2015.

[11] http://lpsolve.sourceforge.net, [Online; Last Accessed: June 25, 2019].

