
Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

Designing Supervisory Policies that Avoid Livelocks in
Manufacturing- and Service-Systems Modeled using

General Petri Nets: A Tutorial using an Illustrative Example

R. Khalegi, A. Raman and R.S. Sreenivas
Department of Industrial and Enterprise Systems Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

khalegh2@illinois.edu, raman12@illinois.edu, rsree@illinois.edu,

Abstract

When a Manufacturing- or Service-System gets into a deadlocked state none of the activities can proceed
towards completion. When the same system is in a livelocked state, some activity of the system enters a
state of suspended animation and is never completed, while other activities proceed to completion without
hindrance. A livelock-free system does not experience deadlocks; but a deadlock-free system can
experience livelocks. This tutorial is about the synthesis of livelock avoidance policies for
Manufacturing- and Service-Systems that are modeled by Petri Nets (PNs).

After characterizing livelock-freedom, we introduce the paradigm of liveness enforcing supervisory
policies (LESPs). An LESP is said to be minimally restrictive, if the fact that it prevents the occurrence
of an event at a given state is reason enough to infer that all livelock-avoidance policies would do the
same. If there is an LESP for a system, there is a unique minimally restrictive LESP. We restrict attention
to LESPs that can be implemented using a Disjunctive Normal Form (DNF) expression on the state of the
PN modeling the system. We describe the process of synthesizing the minimally restrictive LESPs using
an illustrative example using a software-product developed by the authors.

Keywords

Manufacturing Systems, Service Systems, Supervisory Control, Livelock Avoidance

1. Introduction

The domain of discourse for this paper is the operational level control of a manufacturing system, the
contention-resolution of shared resources in computer networks, or the operations-management of multi-
component organizations with event driven dynamics like shipyards and airports, etc. These systems are
representatives of the family of Discrete-Event/Discrete-State (DEDS) systems. They are characterized by
state variables that have a logical or symbolic interpretation. The dynamics of DEDS systems arise due to
the occurrence of specific events, and the state-variables of such systems are piecewise constant with
discontinuities at the occurrence-instants of these events. At each discrete-state, there are potential
discrete-events that can occur, the occurrence of any one of them would change the state of the system,
which then results in a new set of events that could occur, and this process can be repeated as often as
necessary. Air-traffic control systems; automated manufacturing systems; computer networks; integrated
command, control, communication and information (C3I) systems; operations-management of multi-
component organizations with event-driven dynamics like shipyards, airports, hospitals, etc. are examples

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

of DEDS systems.

DEDS systems are regulated by a supervisory policy, which determines which event is to be permitted at
each state, in such a manner that some behavioral specification is satisfied. Our focus is on the synthesis
and implementation of liveness enforcing supervisory policies (LESPs). A DEDS system is live (Alpern
and Schneider, 1985), if irrespective of the past, every event can be executed, not necessarily
immediately, in the future. A live DEDS system does not experience livelocks, and serves as the main
motivation for investigations into the synthesis and implementation of LESPs. A DEDS system is in a
livelocked-state, if some event has entered into a state of suspended animation for perpetuity. If every
event of the DEDS system is in a state of suspended animation, the DEDS system is deadlocked. A
livelock-free DEDS system does not have deadlocked-states, but a deadlock-free DEDS system can still
experience livelocks. Livelock freedom is harder to achieve, compared to deadlock freedom.

Petri nets (PNs) are a popular modeling paradigm for DEDS systems with asynchronous events (Peterson
1981; Murata 1989). In this modeling framework, each task is represented by a transition, and a marking
represents the state of the system. For each marking of the PN, there is a set of possible transitions that
can fire (i.e. a set of events that can occur). The firing of the transition results in a new marking, and the
process repeats as often as necessary. For a PN model that is initialized with a marking, there is a set of
reachable markings that can be realized through the process described above. A PN is said to be live, if it
is possible to fire any transition (although not immediately) from every reachable marking. We consider
PN models that are not live, but can be made live under the supervision of an LESP. The synthesis of the
LESP is essentially a prescription for livelock avoidance in Manufacturing- and Service-Systems modeled
by a PN. These concepts are formally introduced and developed in the next section.

The rest of the paper is organized as follows – section 2 presents the notations and definitions used in this
paper. Section 3 describes the process of synthesizing PN models for manufacturing- and service-
systems. Following this, in section 4 we explain the paradigm of supervisory control of DEDS systems.
We present an illustrative example of an automated painting booth that has to be supervised to prevent the
occurrence of deadlocks.

2. Notations and Definitions

ℕ (ℕ!) denotes the set of non-negative (positive) integers. The cardinality of a set A is represented as
card(A). A Petri net (PN) structure 𝑁 = 𝛱,𝑇,𝛷,𝛤 is an ordered 4-tuple, where 𝛱 = 𝑝!⋯ 𝑝! is a set
of n places, 𝑇 = 𝑡!⋯ 𝑡! is a collection of m transitions, 𝛷 ⊆ (𝛱×𝑇) ∪ (𝑇×𝛱) is a set of arcs, and
𝛤:𝛷 → ℕ!is the weight associated with each arc. The weight of an arc is represented by an integer that is
placed alongside the arc. If an arc has a unitary weight, it is not represented in its graphical representation
in this paper.

If all arcs of a PN are unitary, it is said to be an ordinary PN, otherwise it is a general PN. The initial
marking of a PN structure N is a function 𝒎!:𝛱 → ℕ, which identifies the number of tokens in each
place. A Petri net (PN), N(m0), is a PN structure N together with its initial marking m0.

𝑇∗ represents the set of all finite-length strings of transitions. For 𝜎 ∈ 𝑇∗, we use 𝒙(𝜎) to denote the
Parikh vector of σ. That is, the ith entry, 𝒙𝒊(𝜎), corresponds to the number of occurrences of transition ti
in σ.

Let 𝑥 • ≔ {𝑦|(𝑦, 𝑥) ∈ Φ} and 𝑥• ≔ {𝑦|(𝑥, 𝑦) ∈ Φ} . If ∀𝑝 ∈ 𝑡,
• 𝒎!(𝑝) ≥ Γ(𝑝, 𝑡) for some 𝑡 ∈ 𝑇 and

some marking mi, then 𝑡 ∈ 𝑇 is said to be enabled at marking mi. The set of enabled transitions at
marking mi is denoted by the symbol Te(N, mi). An enabled transition 𝑡 ∈ 𝑇!(𝑁,𝒎!) can fire, which
changes the marking mi to mi+1 according to 𝒎!!! 𝑝 = 𝒎! 𝑝 − Γ 𝑝, 𝑡 + Γ 𝑡, 𝑝 .

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

A set of markings ℳ ⊆ ℕ! is said to be right-closed if (𝒎! ∈ℳ ⋀ 𝒎! ≥ 𝒎! ⇒ 𝒎! ∈ℳ), and is
uniquely defined by its finite set of minimal-elements.

When the marking is interpreted as a nonnegative integer-valued vector, it is useful to define the input
matrix IN (output matrix OUT) as an n×m matrix, where INi, j (OUTi,j) equals Γ((pi,tj)) (Γ((pi,tj))) if pi ∈
•tj, (pi ∈ t•

j) and is zero-valued otherwise. The incidence matrix C of the PN N is an n×m matrix, where C
= OUT−IN.

3. Petri Net Models of Manufacturing- and Service-Systems
The manufacturing process for discrete parts manufacture, automated assembly, and service-systems can
be decomposed into a set of distinct operations, where each operation represents a single stage that is
executed independently of others. These operations might have precedence relations that impose a partial
ordering on how these operations can be executed over time. Typically, each operation requires a set of
resources, such as raw materials, fixtures and specialized machinery. A set of integer-valued resource
states is associated with each resource that captures the conditions required to execute each operations.
For example, a binary resource state associated with raw material could indicate if material is available, or
not available, for processing. The number of customers waiting to be served in a service-system could be
represented by an unbounded, integer-valued set.

The operations of the system can commence only if some of the resource states are no less than some
value. For example, a server can commence a service-task only if there is at least one customer that is
waiting to be served. Upon completion, the operations will change the resource state, and the process can
continue as often as necessary.

To build a PN model of a manufacturing- or service-system, the discrete resource states are mapped to
places. The number of tokens associated with the place corresponds to the value of the resource state.
Transitions are used to represent operations. The input arcs to the transition, and their associated weight,
capture the requirements on the resources that are a prerequisite to the commencement of the operation.
The output arcs from the transition, and their associated weights, capture the changes to the resource
states that would result after the operation represented by the transition is completed. We refer the reader
to Chapter 2 of (Hack 1972), or (Girault and Valk, 2003) for additional information about building PN
models for manufacturing- and service-systems.

4. Supervisory Control of PNs
Under this paradigm, the set of transitions in the PN is partitioned into a set of controllable transitions
(𝑇! ⊆ 𝑇) and a set of uncontrollable transitions (𝑇! ⊆ 𝑇). The controllable (uncontrollable) transitions are
represented as filled (unfilled) boxes in graphical representation of PNs.

A supervisory policy ℘:ℕ!×𝑇 → {0,1}, is a function that returns a 0 or 1 for each transition and each
reachable marking. Transition 𝑡 ∈ 𝑇 is control-enabled (state-enabled) if ℘ 𝒎, 𝑡 = 1 (𝑡 ∈ 𝑇!(𝑁,𝒎))
for some marking m. A transition that is state- and control-enabled can fire, which results in a new
marking as indicated in the previous section. Since uncontrollable transitions cannot be prevented from
firing by the supervisory policy, we require the following condition to be true of all supervisory policies:
∀𝒎 ∈ ℕ!,℘ 𝒎, 𝑡 = 1, if 𝑡 ∈ 𝑇!.

A valid firing string 𝜎 = 𝑡!𝑡!⋯ 𝑡! ∈ 𝑇∗ for a marking mi satisfies the following conditions: (1)
𝑡! ∈ 𝑇! 𝑁,𝐦! ,℘ 𝐦! , 𝑡! = 1 , and (2) for 𝑗 ∈ 1,2,⋯ 𝑘 − 1 the firing of transition tj produces a
marking mi+j , 𝑡!!! ∈ 𝑇! 𝑁,𝐦!!! , and ℘ 𝐦!!! , 𝑡!!! = 1.

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

ℜ(𝑁,𝒎!,℘) denotes the set of markings that are reachable from m0 under the supervision of ℘ in N. We
use 𝒎! !

𝒎! to denote that mj results from the firing of 𝜎 ∈ 𝑇∗from mi.

A transition tk is live under the supervision of ℘ if ∀𝒎! ∈ ℜ 𝑁,𝒎!,℘ ,∃𝒎! ∈ ℜ 𝑁,𝒎! ,℘ such that
𝑡! ∈ 𝑇! 𝑁,𝐦! and ℘ 𝐦! , 𝑡! = 1. If all transitions in N(m0) are live under ℘, then it is a liveness
enforcing supervisory policy (LESP) for N(m0). The policy ℘ is said to be minimally restrictive if for
every LESP ℘:ℕ!×𝑇 → {0,1}, the following condition holds ∀𝒎! ∈ ℕ!,∀ 𝑡 ∈ 𝑇,℘ 𝐦! , 𝑡 ≥ ℘ 𝐦! , 𝑡 .

There is an LESP for N(m0) if and only if 𝒎! ∈ ∆(𝑵) , where
Δ 𝑁 = {𝒎! ∈ ℕ!"#$! |∃ 𝑎𝑛 𝐿𝐸𝑆𝑃 𝑓𝑜𝑟 𝑁 𝒎! } is the set of initial markings m0 for which there is a
LESP for N(m0). It follows that Δ(𝑁) is control invariant (cf. Ramadge and Wonham, 1987; Sreenivas

1997; Sreenivas 2012) with respect to N; that is, if 𝒎! ∈ Δ 𝑁 , 𝑡! ∈ 𝑇! ∩ 𝑇!(𝑁,𝒎!) and 𝒎! !!𝒎! in N,
then 𝒎! ∈ Δ 𝑁 . Equivalently, only the firing of a controllable transition at any marking in Δ 𝑁 can
result in a new marking that is not in Δ 𝑁 .

If ℘ is an LESP for N(m0), then ℜ(𝑁,𝒎!,℘) ⊆ ∆(𝑁). Additionally, the LESP ℘∗, that prevents the
firing of a controllable transition at any marking when its firing would result in a new marking that is not
in ∆(𝑵), is the minimally restrictive LESP for N(m0). That is, there can be no other LESP, independent of
the implementation paradigm, that can be better than ℘∗.

Neither the existence, nor the non-existence, of an LESP for an arbitrary PN is semi-decidable; the
existence of an LESP is decidable if all transitions in the PN are controllable, or if the PN structure
belongs to specific classes identified in the literature (Sreenivas 1997; Sreenivas 2012; Somnath and
Sreenivas 2013; Sreenivas 2013; Salimi, Somnath and Sreenivas 2015). The process of deciding the
existence of an LESP in an arbitrary instance from these classes is NP-hard.

If Δ 𝑁 is known to be right-closed for a PN structure N, then the software described in (Chandrasekaran,
Somnath and Sreenivas, 2015; Salimi, Somnath and Sreenivas, 2015) can be used to synthesize the
minimally restrictive LESP for N(m0) if 𝐦𝟎 ∈ Δ 𝑁 . To date, the ℋ class of PN structures is the largest
class of PN structures for which the set Δ 𝑁 is known to be right-closed. A PN structure 𝑁 =
𝛱,𝑇,𝛷,𝛤 belongs to the class ℋ if and only if ∀𝑝 ∈ Π,∀𝑡! ∈ 𝑝• ∩ 𝑇!,

Γ 𝑝, 𝑡! = 𝑚𝑖𝑛
𝑡 ∈ 𝑝•Γ 𝑝, 𝑡 ∧ ∀𝑡 ∈ Ω 𝑡! , 𝑡!

• ⊆ 𝑡 • ,

where Ω 𝑡 = {𝑡 ∈ 𝑇| 𝑡 • ∩ 𝑡 • ≠ ∅}, denote the set of transitions that share a common input place with
𝑡 ∈ 𝑇.

That is, for any member of the ℋ class of PN structures: (1) for each place, the weights associated with
the outgoing arcs that terminate on uncontrollable transitions must be the smallest of all outgoing arc-
weights, and (2) the set of input places to each uncontrollable transition is no larger than the set of input
places of any transition which shares a common input place with it. This class of PN structures strictly
includes the class of Fully Controlled PNs (i.e. 𝑇! = ∅), the class of Ordinary Free Choice PNs (Hack
1972; Murata 1989), and the class of PNs described in references (Somnath and Sreenivas, 2013;
Sreenivas 2013). If N is a PN structure for which Δ 𝑁 is right-closed, the maximally permissive LESP
for N(m0) if 𝐦𝟎 ∈ Δ 𝑁 can be equivalently represented by a series of Disjunctive Normal Formulae
(DNF), Φ 𝑡! ,𝒎 !!∈!! , where each controllable transition 𝑡! ∈ 𝑇! is control-enabled at marking m if and
only if the formula Φ 𝑡! ,𝒎 evaluates to “true” (cf. Devarakonda and Sreenivas, 2015). These concepts
are illustrated using an example in the next section.

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

We say a policy ℘ is marking-monotone if ℘ 𝐦! , 𝑡! = 1 for some marking 𝐦! implies for ℘ 𝐦! , 𝑡! =
1 for any 𝒎! ≥ 𝒎! . In addition, we say an LESP ℘ for N(mi) is a marking-monotone-LESP if ℘ is an
LESP for N(mj) for any 𝒎! ≥ 𝒎! . Given an arbitrary PN structure N, it is possible to decide if there is a
marking-monotone-LESP for any N(m0) (Chen, Raman, Hu and Sreenivas, 2018).

If Δ 𝑁 is known to be right-closed for a general PN N, then the minimally restrictive LESP ℘∗, that
prevents the firing of a controllable transition at any marking when its firing would result in a new
marking that is not in ∆(𝑵), will be a marking-monotone-LESP.

5. An Illustrative Example

We consider an automated system that paints automobile bodies using two paint-booths (Booth 1 and
Booth 2), and two robots (Robot 1 and Robot 2). The paint-booths have a stationary fixture where the
automobile body remains till the painting tasks are completed. Robot 1 is used to transportation tasks,
while Robot 2 is used for painting tasks.

A base-coat is applied to an unfinished body in Booth 1, following this it is transferred to Booth 2, where
a coat of clear resin is applied. After sufficient time has elapsed for the solvents to evaporate, the finished
automobile frame is transported out of Booth 2, and a new unfinished frame is placed in Booth 1 for
painting.

Figure 1: The PN model representing the

task-flow for Robot 1.

Figure 2: The PN model representing the
task-flow for Robot 2.

The base-coat operation can commence only after Robot 1 has placed an unfinished automobile body in
Booth 1, and the base-coat paint nozzle is affixed to Robot 2. After the completion of this task, the
automobile body with the base-coat is ready to be transported to Booth 2 by Robot 1. At this stage, Robot
2 can either be directed to do another base-coat operation in Booth 1; or, it can be commissioned to
commence a clear-coat operation in Booth 2.

The clear-coat operation can start only after Robot 1 has placed the body with the base-coat in Booth 2,
and the clear-coat nozzle is affixed to Robot 2. After this task is completed, the finished automobile body
is ready to be transported out of Booth 2 by Robot 1, which then places a new unfinished automobile
body in Booth 1 for its base-coat.

Figure 1 shows the PN model representing the task sequence for Robot 1. Transition t1 represents the
operation of putting the base-coat in Booth 1. Transition t2 represents the operation of putting the clear
coat in Booth 2. Transition t3 denotes the operation of removing the painted automobile body from Booth
2, along with the process of placing a new, unfinished body on the fixture in Booth 1. The presence of a
token in place p1 (resp. p2) denotes the resource state fact that an automobile body is on the fixture in
Booth 1 (resp. Booth 2). A token in place p3 denotes the resource state that a finished automobile body is
at the fixture in Booth 2 to be removed.

p1

p2

t1t2

p3 t3

p5

t1

t2

p4

p6

t4

t5

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

Figure 2 shows the PN model for the task sequence for Robot 2. As noted above, transitions t1 and t2
represent the operations of putting the base-coat and the clear-coat in Booth 1 and Booth 2, respectively.
Transition t4 (resp. t5) represents the operation where Robot 2 is commissioned to the clear-coat (resp.
base-coat) paint-operation. The presence of a token in place p4 indicates Robot 2 is ready to be
commissioned for any of the two paint tasks. The present of a token in place p5 (resp. place p6) indicates
Robot 2 is ready to apply the clear-coat (resp. the base-coat) in Booth 2 (resp. Booth 1). The transitions t4
and t5 are controllable, in that the decisions about how Robot 2 is commissioned is to be made by the
supervisory policy enunciated in subsequent text.

Figure 3: The PN model that
results from merging the PN

models shown in Figures 1 and 2.

Figure 4: The Deadlock that arises
from commissioning Robot 2 for a
clear-coat operation while there is
an automobile body waiting for its

base-coat.

Figure 5: The Deadlock that arises
from commissioning Robot 2 for a
base--coat operation while there is
an automobile body waiting for its

clear-coat.

Figure 3 shows the PN model that results from merging the two PNs of Figures 1 and 2. Figure 4
demonstrates the fact that the improper decision of commissioning Robot 2 to the clear-coat operation,
while there is an unfinished automobile body waiting for its base-coat paint in Booth 1, will result in a
deadlock where no activity can be completed. Figure 5 demonstrates the deadlock that arises when Robot
2 is commissioned to the base-coat operation while there is an automobile body waiting for its clear-coat.
We will now demonstrate the use of the software product described in references (Chandrasekaran,
Somnath and Sreenivas 2015; Salimi, Somnath and Sreenivas 2015) to generate a livelock/deadlock
avoidance policy for this PN model.

The input file for the PN shown in figure 3, as per the requirements for the software of references
(Chandrasekaran, Somnath and Sreenivas 2015; Salimi, Somnath and Sreenivas 2015) is shown in figure
6. Figure 7 shows the output generated by this software tool. For the PN shown in figure 3, the set ∆(𝑁)
is identified by the minimal elements

1 0 0 0 0 1 ! , 0 0 1 0 0 1 ! , 0 1 0 0 1 0 ! , 1 0 0 1 0 0 ! , 0 1 0 1 0 0 ! , (0 0 1 1 0 0)! .
That is, for any 𝐦𝟎 ∈ Δ 𝑁 (i.e. any 𝐦𝟎 ∈ ℕ! that is greater-than-or-equal-to any one of the six minimal
elements listed above), there is a supervisory policy that can prevent the occurrence of any livelocks (and
consequently, any deadlocks as well).

This policy will prevent the firing of controllable transitions t4 (resp. t5) at any marking 𝐦𝟏 ∈ ℕ! if
𝒎! !! 𝒎! (resp. 𝒎! !! 𝒎!) and 𝒎𝟐 ∉ Δ 𝑁 . This policy is the minimally restrictive LESP for N(m0) for
any 𝐦𝟎 ∈ Δ 𝑁 , where N is the PN structure shown in figure 3. Alternately, from the results of reference
(Devarakonda and Sreenivas, 2015), the minimally restrictive LESP for N(m0) for any 𝐦𝟎 ∈ Δ 𝑁 ,
where N is the PN structure shown in figure 3 will permit the firing of controllable transition t4 only if this
formula evaluates is true:

p1

p2

t1t2

p3 t3

p5

p4

p6t4 t5

p1

p2

t1t2

p3 t3

p5

p4

p6t4 t5

p1

p2

t1t2

p3 t3

p5

p4

p6t4 t5

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

𝒎 𝑝! ≥ 1 ∧ 𝒎 𝑝! ≥ 1 ∨ 𝒎 𝑝! ≥ 1 ∧ 𝒎 𝑝! ≥ 1 ∨ 𝒎 𝑝! ≥ 1
∨ 𝒎 𝑝! ≥ 1 ∧ 𝒎 𝑝! ≥ 1 ∨ 𝒎 𝑝! ≥ 1 ∧ 𝒎 𝑝! ≥ 1 .

That is, Robot 2 will be tasked to start the clear-coat operation at a marking m if and only if the above
DNF evaluates to “true” at m.

Figure 6: The input file for the PN shown in figure 3.

Figure 7: The output generated by the software of

references (Chandrasekaran, Somnath and Sreenivas
2015; Salimi, Somnath and Sreenivas 2015)

Likewise, controllable transition t5 is permitted only if this formula evaluates is true:

𝒎 𝑝! ≥ 1 ∨ 𝒎 𝑝! ≥ 1 ∨ 𝒎 𝑝! ≥ 1 ∧ 𝒎 𝑝! ≥ 1 ∨ 𝒎 𝑝! ≥ 1 ∧ 𝒎 𝑝! ≥ 1 .
Or, Robot 2 will start the base-coat operation at a marking m if and only if the above DNF evaluates to
“true” at m.

6. Conclusions

Using an illustrative example we described how the operations in a manufacturing- or service-systems
could be modeled using Petri nets. These systems are prone to livelocks, where an activity never
progresses to completion, while the other activities proceed normally. We showed how a livelock
avoidance policy could be synthesized for these systems using a software tool from the literature.

Acknowledgements

This work was supported in part by the Arthur Davis Faculty Scholar Endowment at the University of Illinois at
Urbana-Champaign.

pn1 Fri Sep 28 22:40:44 2018 1
6 5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 1 0 0 0
1 0 0 0 0

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 1

1 0 0 1 0 0

0 0 0 1 1

#Places
#Transitions

(6 x 5) Input Matrix

(6 x 5) Input Matrix

(6-dim vector)
Initial Marking

(5-dim vector) Controllable/Uncontrollable
Transitions

pn1.res Fri Sep 28 22:40:49 2018 1
 Input File = "pn1"

 Incidence Matrix :

 T 1 2 3 4 5
 P
 1 -1 . 1 . .
 2 1 -1 . . .
 3 . 1 -1 . .
 4 1 1 . -1 -1
 5 . -1 . 1 .
 6 -1 . . . 1

 Initial Marking : (1 0 0 1 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 1)
 2: (0 0 1 0 0 1)
 3: (0 1 0 0 1 0)
 4: (1 0 0 1 0 0)
 5: (0 1 0 1 0 0)
 6: (0 0 1 1 0 0)

 List of Controllable Transitions

 t4 t5

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0 1)
 2: (0 0 1 0 0 1)
 3: (0 1 0 0 1 0)
 4: (1 0 0 1 0 0)
 5: (0 1 0 1 0 0)
 6: (0 0 1 1 0 0)

 This is An LESP

Proceedings of the International Conference on Industrial Engineering and Operations Management
Bangkok, Thailand, March 5-7, 2019

© IEOM Society International

References
Alpern, B. and Schneider, F.B, “Defining liveness,” Information Processing Letters, vol. 21, no. 4, 1985.
Chandrasekaran, S, Somnath, N. and Sreenivas, R.S., “A Software Tool for the Automatic Synthesis of Minimally

Restrictive Liveness Enforcing Supervisory Policies for a class of General Petri Nets,” Journal of Intelligent
Manufacturing, Volume 26, No. 5, October, 2015, 945-958.

Chen, C, Raman, A. Hu, H and Sreenivas, R.S., “On Liveness Enforcing Supervisory Policies for Arbitrary Petri
Nets,” IEEE Transactions on Automatic Control, under review, November 2018.

Devarakonda, V. and Sreenivas, R.S., “On a Sufficient Information Structure for Supervisory Policies that Enforce
Liveness in a Class of General Petri Nets,” IEEE Transactions on Automatic Control, Vol. 60, No. 7, July 2015,
1915-1921.

Girault, C. and Valk, R., Petri Nets for Systems Engineering: A Guide to Modeling, Verification and Applications,
Springer Verlag, 2003.

Hack, M.H.T., Analysis of Production Schemata by Petri Nets, Masters Thesis, Project MAC, Massachusetts
Institute of Technology, Cambridge, MA, February 1972.

Murata, T., “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol. 77, no. 4, pp. 541 580,
1989.

Peterson, J.L. Petri net theory and the modeling of systems. Prentice Hall, 1981.
Ramadge. P.J.G. and Wonham, W.,“Modular feedback logic for discrete event systems,” SIAM J. Control and

Optimization, vol. 25, no. 5, pp. 1202–1218, September 1987.
Salimi, E. Somnath, N. and Sreenivas, R.S., “A Software Tool for Live-Lock Avoidance in Systems Modeled using

a Class of Petri Nets,” International Journal of Computer Science, Engineering and Applications, vol. 5, no. 2,
pp. 1–13, October 2015.

Somnath, N. and Sreenivas, R.S., “On Deciding the Existence of a Liveness Enforcing Supervisory Policy in a Class
of Partially-Controlled General Free-Choice Petri Nets,” IEEE Transactions on Automation Science and
Engineering, vol. 10, pp. 1157–1160, April 2015.

Sreenivas, R.S., “On the existence of supervisory policies that enforce liveness in discrete-event dynamic systems
modeled by controlled Petri nets,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 928–945, July
1997.

Sreenivas, R.S., “On the existence of supervisory policies that enforce liveness in partially controlled free-choice
petri nets,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp. 435–449, February 2012.

Sreenivas, R.S., “On a decidable class of partially controlled petri nets with liveness enforcing supervisory policies,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1256–1261, August 2013.

Biographies

Roshanak Khalegi is a graduate student pursuing her Ph.D. in Industrial Engineering at the Department of
Industrial and Enterprise Systems Engineering at the University of Illinois at Urbana-Champaign. She completed
her Bachelor of Science and Master of Science degrees in Industrial Engineering from the University of Tehran, Iran
in 2010 and 2012, respectively. Her research is in the area of supervisory control of DEDS systems.

Arun Raman is currently working towards the Ph.D. degree in Systems Engineering at the University of Illinois at
Urbana-Champaign. He was a Research Associate with the Indian Institute of Management, Ahmedabad from
2014-2015. He worked as an Edison Engineer in GE Oil and Gas in Compressor and Gas Turbine simulation from
2012-2014. He has a Master of Science in Systems and Control from the Indian Institute of Technology Bombay,
Mumbai in 2012. His research interests lie in the area of classical control, applied mathematics and the control of
DEDS systems.

Ramavarapu Sreenivas received the B.Tech. degree in Electrical Engineering from the Indian Institute of
Technology, Madras, India in 1985, and the M.S. and Ph.D. degrees in Electrical and Computer Engineering from
Carnegie Mellon University, Pittsburgh, PA in 1987 and 1990, respectively. He was a Postdoctoral Fellow in
Decision and Control at the Division of Applied Sciences, Harvard University, Cambridge, MA, before he joined the
University of Illinois at Urbana-Champaign in 1992, where he is an Associate Professor of Industrial and Enterprise
Systems Engineering.

